Interaction models for functional regression

نویسندگان

  • Joseph Usset
  • Ana-Maria Staicu
  • Arnab Maity
چکیده

A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Interaction Effects of Good Governance and Public Health Expenditure on Children’s Health Status: Quantile Regression for Upper-Middle Income Countries

Background and Aim: Public health expenditures and the quality of governance are among factors affecting the health status of a population. Therefore, the purpose of this study was to investigate the interaction effects of good governance and public health expenditures on the health status of children in upper-middle income countries. Materials and Methods: This descriptive-analytical applied ...

متن کامل

Extension of Logic regression to Longitudinal data: Transition Logic Regression

Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...

متن کامل

Determination of adaptive responses of peanut genotypes and patterns of genotype × location interaction using the CSM-CROPGRO-Peanut model

The adaptive responses of crop genotypes and patterns of genotype x location (G x L) interaction are important to crop improvement as they are the basis for selection for specific adaptation and for elucidation of the causes of G x L interaction. Their legitimate assessment, however, requires yield data for the test genotypes for a large number of sites and over multiple years. Such data are se...

متن کامل

Parametric model based assessment of genotype×environment interactions for grain yield in durum wheat under irrigation

The objectives of this study were to assess the genotype (G) by environment (E) interaction of grain yield of durum wheat(Triticum durum Desf.) based on parametric models, additive main effects and multiplicative interaction (AMMI) and joint linear regression models; and compare the relative efficiency of the two models in explaining the GE effects. Twenty-three genotypes were evaluated across ...

متن کامل

Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price

Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational statistics & data analysis

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2016